1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель без клапанных пружин: новые технологии двигателестроения

Двигатели без распредвалов, новая технология, которая изменит автоиндустрию

FreeValve, как может работать двигатель без распредвала

Уверен, что многие из наших читателей знают о существования компании под названием. Koenigsegg. Но также мы уверены, что вы почти ничего не слышали о её дочерней фирме под названием FreeValve.

Если это действительно так, то добро пожаловать в мир высоких автотехнологий. Скандинавы разработали и претворяют в жизнь чрезвычайно интересный продукт, новый (это не преувеличение) тип двигателя в котором нет таких привычных для всех кто связан с автомобилями деталей, таких как распредвал двигателя.

Если взглянуть в прошлое, в 80-е года, топовой и самой продвинутой технологией стала система управления клапанами типа VTEC, 90-е года отличились разработкой и применением продвинутой системой впрыска топлива, чуть позже кульминацией развития прямого впрыска стали поздние 2000-е. Будущее за технологией FreeValve, «без системы распредвалов» приводящего клапаны в движение в ДВС. Но действительно ли это станет будущим моторостроения? Давайте посмотрим вместе.

Как и любая другая технологическая революция, FreeValve Camfree стал технологическим прорывом, который должен (или обязан?) изменить расстановку сил в технологиях создания двигателей внутреннего сгорания. Основной принцип звучит просто и гениально, вместо определённой привязки к определенной, статической формуле, новая технология предлагает гибкость в процессе работы мотора.

Технологии изменяемого открытия клапанов существуют уже относительно давно, было сделано множество прототипов от разных автопроизводителей, существуют даже похожие серийные версии от BMW, но ни одна из них не может сравниться с возможностями, которые предлагает новый тип двигателя, разработанный скромной скандинавской компанией. Гениальность продвигаемой системы также не в последнюю очередь заключается в том, что она не подразумевает серьёзных изменений в конструкции самого двигателя. Тем не менее эта кажущаяся простота не помогла избежать FreeValve дороговизны и сложностей производства. Закон бизнеса, новинки стоят всегда немалых денег.

Мотор FreeValve на 30% мощнее, в два раза экологичнее и на 20-50% экономичнее обычного распредвального двигателя

Как и другие инженеры, сосредоточившиеся на развитии технологий дезактивации и изменяемой степени сжатия, а также изменяемого объёма, парни из FreeValve работали над тем, что называется топовой мировой технологией мотора, стоящей на острие атаки прогресса.

В ходе исследований, компания Koenigsegg выяснила, что технология привода клапанов имеет огромный потенциал развития, решение было логичным, разработать реальную систему, основанную на теоретическом опыте, таким образом для достижения амбициозных целей произошло объединение с дочерней компанией Cargine, впоследствии переименованной в FreeValve.

Вступление закончилось. Переходим к подробностям.

Давайте перейдем к изучению всех нюансов FreeValve технологии, которая не так давно была публично раскрыта для общественности.

В чем разница между системой без распредвалов и классической технологией привода клапанов

Из названия и описания технологии становится понятным, что речь действительно идет о двигателе, в котором отсутствуют распределительные валы. На самом деле необычный подход к инженерии внутримоторных технологий, главный секрет которых заключается в том, что двигателю не нужны эти валы, поскольку клапаны рассчитаны на индивидуальную работу, каждый по отдельности. Каждый клапан не связан жестко с соседними клапанами, отсюда проистекает название- «свободные клапаны», FreeValve.

Главная мысль заключается в том, чтобы работа двигателя внутреннего сгорания стала более эффективной во всех фазах работы. Стандартные распределительные валы ввиду заложенных в них конструктивных особенностей являются крайне компромиссными вариантами, что зачастую приводит к определенным «жертвам», повышенный расход топлива в угоду мощности или низкий крутящий момент на высоких оборотах в угоду пиковой мощности и т.д..

С новой технологией инженеры получили возможность сделать двигатель эффективным при любых оборотах и на всех режимах работы, не опасаясь провалов на холостом ходу, посредственной динамики или высокого расхода топлива.

Звучит как недосягаемая мечта, но нет ничего невозможного, возможно все, что возможно себе представить. Дочерняя компания Кёнигсегг добилась высоких результатов, создав вполне рабочий, практически серийный экземпляр своей разработки, которую они долгие годы возили от выставки к выставке, представляя прототип на разных своих новинках. Вместо распредвалов, каждый клапан приводится в движение отдельным приводом, работу которых в свою очередь контролирует электроника.

Насколько хороша новинка и насколько она дороже обычной системы привода клапанов?

Разработчики утверждают, что система без распредвалов использует на 10% меньше энергии, чем традиционные решения привода. Эти проценты в стандартной схеме двигателя обычно уходят на преодоление трения, привод и работу всей верхней части «головы» мотора, то есть всех этих многочисленных систем. Эффективность использования такого двигателя как несложно догадаться будет на 10% лучше, но гораздо больший выигрыш станет очевидным при экологической проверке.

Двигатель может работать в четырех циклах: стандартный- Отто, сложный- Миллера и экономный-Аткинсона. Также двигатель способен воспроизводить цикл Хедмана с изменяемой степенью сжатия

Например, в двигателе с искровым зажиганием, (читайте, в бензиновом моторе) с установленным FreeValve можно смело снять каталитический нейтрализатор, а экономичность даже у мощного бензинового двигателя станет сродни дизельному варианту.

В результате полученный силовой агрегат станет дешевле эквивалентного дизельного мотора, говорят в FreeValve. На дизельные двигатели также могут быть установлены новомодные электронные приводы клапанов, что в теории должно чуть снизить расход мотора работающего на ДТ и серьезно повысить экологичность его выхлопа.

Стоимость новой технологии. Если взять в расчет науку экономику, то получается, что первые 10- 100 тыс. двигателей, построенных по этой технологии, будут стоить дороже обычных типов силовых агрегатов, но в конечном итоге, когда производство будет поставлено на промышленный поток и при достижении определённой «критической массы», стоимость новых типов моторов начнет постепенно снижаться и в итоге сравняется со стоимостью стандартного ДВС.

При этом такие моторы будут более эффективными, чем традиционные модели, будут меньше расходовать горючего при увеличении мощности и станут показывать гораздо более приемлемые показатели полки крутящего момента.

Что произойдет, если система покажет себя несостоятельной?

Приверженцам классической схемы двигателей и тем людям, которые с опаской принимают все обновления в мире технологий и технических новшеств, наверное, интересно, насколько все будет плохо, при поломке новомодной системы. И вообще, а надежная ли она?

Отрицать глупо, любой, даже самый надежный девайс может выдать неприятную осечку, также не стоит забывать про конструктивные дефекты, которые могут быть не выявлены на начальном этапе разработки. Итог предсказуем, дорогая поломка. Но и здесь у FreeValve есть небольшой утешительный козырь в рукаве.

Невероятно, но этот двигатель сможет нормально выполнять свои рабочие функции даже при поломке одного или нескольких приводов клапанов, разумеется это скажется на пиковой мощности на высоких оборотах, но как уверяют разработчики, разница будет незначительна.

Предусмотрен аварийный вариант работы двигателя,заключается он в том, что даже если 75% приводов клапанов выйдут из строя, автомобиль сможет самостоятельно добраться до СТО, невероятная живучесть. Тестирования продолжаются. но самое главное, чего разработчики все еще никак не могут побороть, это как раз выносливость такого типа привода. В нем все хорошо, но камень преткновения, состоит в том, что долго система не выхаживает. Однако это временное явление и его удастся нейтрализовать, ведь инженеры по теоретическим расчётам выяснили, надежность такой системы может быть сопоставима со стандартным двигателем ДВС. Смоделированы сотни-миллионов циклов работы приводов, ощутимого износа обнаружено не было. Осталось применить знания на практике и можно выезжать.

Шведская компания сравнивает текущую технологию распределительного вала, с игрой на пианино двумя руками, каждая из которых привязана к противоположным концам метлы. Использование каждого пальца по отдельности, как делают пианисты, позволит перейти к индивидуальному управлению клапанами.

Из вышесказанного можно сделать вывод:

1. На данный момент технология явно сырая. Двигатель не способен пройти столько же, сколько ходят без серьезных проблем моторы с обычной системой распредвалов.

2. Но даже на этом этапе разработки, система показала себя с лучшей стороны. Ни один мотор со стандартной системой газораспределения не способен хоть как-то нормально работать, если перестанут работать 75% клапанов (представим это гипотетически). Более того, перестань функционировать в нормальном режиме хотя бы один из клапанов на обычных ДВС, вы потеряете больше, чем пиковую мощность на высоких оборотах. То есть в плане поломок, если уж что-то произошло с ГРМ, скандинавская технология явно обходит все другие типы моторов.

Еще один плюс. На революционном двигателе, как утверждают инженеры, работающие над проектом, невозможна встреча клапанов с поршнями в случае обрыва ремня/растяжения цепи ведь ее здесь просто-напросто нет.

Технические нюансы. FreeValve- более, чем полностью изменяемые фазы газораспределения?

Если ответить кратко, по существу, то да, это больше чем двигатель с изменяемыми фазами газораспределения, потому что каждый конкретный клапан может иметь различные «подъемы», как по времени, так и в позиции открытия. Также он может открываться и закрываться с разной скоростью, изменяя частоту, за этим в онлайн режиме следит система бортовых компьютеров высчитывая необходимый режим хода клапана в соответствии с режимом работы двигателя с точностью подъема вплоть до 1/10 миллиметра.

Как видно приводы (актуаторы) способны делать это с необычайной точностью, значительно превосходя показатели работы ГРМ в обычном двигателе.

Кстати, электроприводы, они же актуаторы, самая важная часть разрабатываемого типа мотора. Клапаны при помощи индивидуальных систем приводятся в движение до 20 тыс. открытий, закрытий в минуту. Датчики контроля положения клапана зорко следят за происходящим, мониторя положение клапанов, внимание, — 100 тыс. раз в 1 секунду (. ). Причем привод, двигающий клапаны не просто электрический, такой тип не выдерживает колоссальных нагрузок/скоростей/температур и быстро выходит из строя. В компании Koenigsegg разработали «пневмогидроэлектрический тип привода». Каждая из стихий: пневматика, гидравлика и электрика, выполняет сугубо свою отдельную функцию. Пневматикой клапан открывается, при помощи гидравлики- закрывается. Электропривод подает воздух и масло, чтобы в системе было необходимое для работы актуатора давление.

Этот тип привода подойдет и гоночному мотоциклу и грузовому автомобилю

Еще одна экономическая выгода, о которой стоит упомянуть. Применение гидропневмоэлектро клапанов не требует множества деталей, дорогих и тяжелых. Не нужны шестерни ГРМ, крышка ГРМ, цепь ГРМ (или ремень), распредвал и даже регулятор давления наддува для турбированных двигателей.

Ввиду вышесказанного силовой агрегат можно сделать компактнее и легче традиционного мотора.

Когда можно купить автомобиль с таким двигателем?

Удивительно, но первым автомобилем, который выйдет на рынок оборудованный такой безраспредвальной системой, станет не гоночный мощный спорткар Koenigsegg, скорее всего лавры первопроходца достанутся китайской модели Quoros 3, с которым шведский Кенигсегг заключил договор о сотрудничестве. Доступность гарантирована. Несколько месяцев, год или полтора и на дорогах появятся первые ласточки. Учитывая то, что шведы разрабатывали технологию начиная с 2000 года, ждать осталось совсем не долго.

На выходе мы получим более тихий, более экономичный, эффективный и мощный бензиновый мотор по сравнению с современными аналогами. Надеемся реальность не разочарует.

Двигатель без клапанных пружин: особенности мотора с магнитными клапанами

Как известно, сегодня поршневой двигатель внутреннего сгорания практически достиг предела своего совершенства, то есть значительно улучшить или доработать различные версии силового агрегата данного типа не представляется возможным.

При этом детальная конструкция держится в секрете и не доступна широким массам, нет никаких предпосылок для начала серийного производства подобных ДВС, ставится под сомнение реальная работоспособность таких силовых установок и т.д.

Если же говорить об инновациях, которые пошли в серию, сегодня особый интерес представляют разве что бензиновые и дизельные двигатели Mazda SkyActiv. Однако на этом эволюция ДВС все равно не прекратилась. Далее мы рассмотрим, что такое двигатель, который имеет магнитные клапаны, а также какие преимущества в перспективе имеет данное решение.

Читать еще:  Какие амортизаторы устанавливаются на ладу гранту. оригинал vs аналоги

Доработка ГБЦ: магниты вместо пружин клапана

Итак, давно известно, что потери полезной энергии на трение и приведение в действие различных механизмов и узлов в ДВС довольно значительные. Не трудно догадаться, если такие потери снизить, это будет означать, что силовая установка станет мощнее и экономичнее.

Такой подход в перспективе позволит увеличить КПД бензинового мотора на 10 или даже 12 процентов. Результат — бензиновый агрегат по топливной экономичности и ряду других показателей вплотную приблизится к дизельному.

Чтобы было понятнее, для начала необходимо рассмотреть принцип работы обычного механизма ГРМ с распредвалом и пружинами клапанов. В двух словах, механизм газораспределения работает так, что в результате вращения распределительного вала на клапан воздействует толкатель.

Это позволяет клапану открыться в строго заданный момент и оставаться открытым определенный промежуток времени. Также дополнительно имеется пружина, которая принудительно закрывает клапан сразу после того, как усилие от толкателя ослабевает.

Если к этому добавить, что большинство современных ДВС имеют два распредвала и 16 клапанов, становится понятно, что большую часть энергии мотор расходует именно для поддержания работы ГРМ.

Так вот, недавно появилась информация о том, что был создан двигатель, который вместо клапанных пружин получил магниты. Разработка принадлежит отечественным новаторам. Если коротко, вместо привычного распредвала с кулачками был установлен доработанный.

Такой вал получил особые магнитные эксцентрики. Эксцентрики притягивают клапан, обеспечивая постоянное зацепление. Получается, клапан «примагничен» к части вала, при этом в заданное время происходит открытие и закрытие клапана.

На практике, это позволяет достичь, в среднем, 30-40% экономии топлива на 100 км. пути, а также добиться прибавки мощности на 25-30%. Кстати, постройка такого двигателя была реализована на базе мотора ВАЗ Приора, а само изобретение создатели успешно запатентовали. Еще добавим, что в перспективе наличие магнитов на валу может позволить добиться еще более впечатляющих результатов.

Например, отдельные энтузиасты на профильных форумах обращают внимание на то, что если к мощным магнитам добавить еще и индукционные катушки, тогда вполне можно избавиться и от автомобильного генератора. Это значит, что двигателю не нужно будет крутить отдельный агрегат, то есть еще больше должен увеличиться показатель КПД двигателя.

Перспективы двигателя с магнитными клапанами

Вполне логично, что схема такого устройства ГРМ является достаточно перспективной. Однако для многих скептиков работоспособность данного решения является предметом для споров, надежность также вызывает определенные сомнения.

Начнем с того, что наибольшего внимания заслуживает сама реализация магнитного крепления, так как на высоких оборотах распредвала клапан может попросту потерять жесткую сцепку, что приведет к нарушениям работы ГРМ и даже может стать причиной непредвиденных поломок.

Единственный аргументом может служить само утверждение изобретателей, которые наглядно демонстрируют, что благодаря магнитам удается удерживать вес около 400 грамм. Этого вполне достаточно для нормальной работы механизма газораспределения с учетом любых оборотов и нагрузок.

Напоследок отметим, что магнит вполне может прийти в негодность через какое-то время (фактически, магнитное поле станет менее сильным и сцепка ослабнет). Такую возможность исключать не стоит, однако для того, чтобы произошло «размагничивание», необходимо много времени (несколько лет).

На практике привычный ГРМ также нуждается в обслуживании через определенный пробег (ослабевают пружины клапанов, изнашивается сам распредвал и т.д.). При этом в двигателе без клапанных пружин, который будет изначально экономичнее и мощнее, также можно сделать замену на новые магниты.

Что в итоге

Как видно, относительно простое и доступное решение внедрить магниты в устройство клапанного механизма позволяет заметно улучшить характеристики ДВС. При этом также стоит отметить достаточно низкую себестоимость подобной инновации.

ТЕНДЕНЦИИ двигателестроения. Пойти своим путем

ТЕНДЕНЦИИ двигателестроения. Пойти своим путем

Какие критерии считают ключевыми для выбора «самого-самого»? Есть ли принципиальные отличия в подходе к конструированию на разных континентах? Попробуем найти ответы на эти вопросы.

ЕВРОПА: В РЕЖИМЕ ЭКОНОМИИ

На недавней пресс-конференции в Лондоне глава концерна «Пежо-Ситроен» Жан-Мартин Фольц весьма неожиданно для многих отозвался о гибридных автомобилях: «Посмотрите вокруг: таких машин в Европе менее 1%, тогда как доля дизелей достигает половины». По мнению господина Фольца, современный дизель гораздо дешевле в производстве, будучи не менее экономичен и экологичен.

Времена, когда дизели оставляли за собой черный шлейф, тарахтели на всю улицу и заметно уступали по литровой мощности бензиновым моторам, прошли. Сегодня удельная доля дизелей в Европе составляет 52% и продолжает расти. Толчок дают, например, экологические бонусы в виде сниженных налогов, но прежде всего — дороговизна бензина.

Прорыв на дизельном фронте произошел к концу 90-х, когда в серию пошли первые моторы с «коммон рейл» — общей топливной рампой. С тех пор давление в ней неуклонно растет. В новейших двигателях оно достигает 1800 атмосфер, а ведь еще недавно 1300 атмосфер считались выдающимся показателем.

На очереди — системы с двукратным повышением давления впрыска. Сначала насос нагнетает топливо в аккумулирующий резервуар до 1350 атм. Затем давление поднимают до 2200 атм, под которыми оно и поступает в форсунки. Под таким давлением топливо впрыскивают через отверстия меньшего диаметра. Это улучшает качество распыла, повышает точность дозировки. Отсюда выигрыш в экономичности и мощности.

Уже не первый год применяют пилотный впрыск: первая «партия» горючего поступает в цилиндры чуть раньше основной дозы, чем достигается более мягкая работа мотора и чистый выхлоп.

Помимо «коммон рейла», есть иное техническое решение, чтобы поднять давление впрыска на небывалую высоту. Насос-форсунки перебрались с грузовых моторов и на легковые дизели. Им привержен, в частности, «Фольксваген», составляя здоровую конкуренцию «общей рампе».

Одним из камней преткновения на пути дизеля всегда был экологический. Если бензиновые моторы журили за угарный газ, окиси азота и углеводороды в выхлопе, то дизели — за соединения азота и частицы сажи. Введение в прошлом году норм Евро IV далось непросто. С окислами азота справились посредством нейтрализатора, а вот сажу ловит особый фильтр. Он служит до 150 тыс. км, после чего его либо меняют, либо «прокаливают». По команде управляющей электроники в цилиндр подаются отработавшие газы из системы рециркуляции и большая доза топлива. Температура выхлопа повышается, и сажа выгорает.

Примечательно, что большинство новых дизелей могут работать на биодизельном горючем: в его основе лежат растительные масла, а не нефтепродукты. Это горючее менее агрессивно к окружающей среде, поэтому его массовая доля на рынке Европы должна достигнуть к 2010 году 30%.

Пока же специалисты отмечают совместную разработку «Дженерал моторс» и ФИАТ — один из «Двигателей года 2005». Малолитражный дизель благодаря электронике способен оперативно менять параметры впрыска и тем самым обеспечивать больший момент и быстрый пуск двигателя. Широкое использование алюминия, существенно снизившее массу и размеры, в сочетании с достаточной мощностью 70 л.с. и немалым крутящим моментом 170 Н.м позволили 1,3-литровому мотору набрать большое число голосов.

Учитывая все достижения на дизельном фронте, можно смело утверждать — ближайшее будущее Европы именно за этими двигателями. Они становятся мощнее, тише и удобнее для повседневной езды. С учетом теперешних цен на нефть потеснить их в Старом Свете не способен ни один из существующих типов двигателей.

АЗИЯ: БОЛЬШЕ СИЛ НА ЛИТР

Главное достижение японских двигателистов за последний десяток лет — высокая литровая мощность. Загнанные законодательством в узкие рамки, инженеры ухитряются добиться отменных результатов самыми разными способами. Яркий пример — изменяемые фазы газораспределения. В конце 80-х японская «Хонда» с ее системой VTEC совершила настоящий переворот.

Необходимость варьировать фазы диктуется различными режимами движения: в городе важнее всего экономичность и крутящий момент на низких оборотах, на трассе — на высоких. Отличаются и пожелания покупателей в разных странах. Раньше настройки мотора были постоянными, теперь же стало возможным менять их в буквальном смысле на ходу.

Современные моторы «Хонда» оснащают несколькими типами VTEC, в том числе и трехступенчатым устройством. Здесь корректируются параметры не только на низких и высоких оборотах, но и на средних. Так удается совместить несовместимое: высокую удельную мощность (до 100 л.с./л), расход топлива в режиме 60–70 км/ч на уровне 4 л на сотню и высокий крутящий момент в диапазоне от 2000 до 6000 об/мин.

В результате японцы успешно снимают высокую мощность с весьма скромных объемов. Рекордсменом по этому показателю который год подряд остается родстер «Honda S2000» с безнаддувным 2-литровым двигателем мощностью 250 л.с. Несмотря на то, что мотор появился еще в 1999 году, он по-прежнему в числе лучших — второе место среди претендентов 2005 года объемом 1,8–2,0 л. Вторым бесспорным достижением японцев являются гибридные установки. «Гибрид Синержи Драйв» производства «Тойоты» отметился среди призеров не один раз, набрав наибольшее число баллов в номинации «экономичный двигатель». Заявленный показатель — 4,2 л/100 км для такой немаленькой машины, как «Тойота Приус», безусловно хорош. Мощность «Синержи Драйв» достигает 110 л.с., а суммарный момент бензиноэлектрической установки- выдающийся — 478 Н.м!

Кроме топливной экономичности, подчеркивается экологический аспект: выброс углеводородов и окислов азота у мотора на 80 и 87,5% ниже, чем того требуют нормы Евро IV для бензиновых моторов, и на 96% ниже требований к дизелям. Таким образом, «Синержи Драйв» с запасом укладывается в самые жесткие в мире рамки — ZLEV, планируемые к введению в Калифорнии.

В последние годы наметилась любопытная тенденция: применительно к гибридам речь все реже идет об абсолютных рекордах экономичности. Возьмем «Lexus RX400h». Этот автомобиль расходует вполне обычные 10 л в городском цикле. С одной оговоркой — это очень мало, учитывая мощность основного мотора 272 л.с. и момент 288 Н.м!

Если японским компаниям, в первую очередь «Тойоте» и «Хонде», удастся снизить себестоимость агрегатов, продажи гибридов могут подскочить на порядок уже в ближайшие 5–10 лет.

АМЕРИКА: ДЕШЕВО И СЕРДИТО

На форумах американских автомобилей после проведения конкурса «Двигатель года» обязательно возникают дебаты: как это так, в числе победителей нет ни одного двигателя нашей разработки! Все просто: американцы, несмотря на продолжающийся топливный кризис, не слишком преуспели в экономии бензина, а про дизельное топливо и слышать не хотят! Но это не значит, что им нечем похвастать.

К примеру, «крайслеровские» моторы серии «Хеми», блиставшие на мощных моделях (их традиционно именуют в США «масл карз») еще в 50-х. Их название ведет родословную от английского hemispherical — полусферический. Конечно, за полвека многое изменилось, но, как и раньше, у современных «хеми» полусферические камеры сгорания.

Традиционно во главе линейки моторов стоят агрегаты неприличного по европейским меркам литража — вплоть до 6,1 л. Стоит открыть проспект, в глаза бросается разница в подходах к конструированию. «Лучшая в классе мощность», «самый быстрый разгон», «низкий уровень шума»… о расходе топлива говорится вскользь. Хотя он, конечно, небезразличен инженерам. Просто приоритеты несколько иные — динамические характеристики и… невысокая себестоимость агрегата.

В моторах «Хеми» нет изменяемых фаз. Они не столь форсированы и не могут даже близко подойти к лучшим японским агрегатам по литровой мощности. Зато в них применена хитроумная система MDS (Multi Displacement System — система нескольких объемов). Как намекает название, ее смысл кроется в отключении четырех из восьми цилиндров двигателя, когда не требуется использовать все 335 «лошадей» и 500 Н.м момента, например у двигателя объемом 5,7л. На отключение уходит всего 40 миллисекунд. Подобные системы прежде использовал «Джи-Эм», а у «Крайслера» это первый опыт. По заверению фирмы, MDS позволяет сэкономить до 20% топлива, в зависимости от манеры вождения. Боб Ли, вице-президент отделения двигателей «Крайслер», очень горд новым мотором: «Отключение цилиндров происходит элегантно и просто… преимущества — надежность и низкая цена».

Читать еще:  То шкода октавия а5: то1 15000, то2 30000/2 года, то3 45000, то4 60000/4 года

Естественно, отключаемыми цилиндрами американские инженеры не ограничиваются. Они готовят и совсем другие разработки, например силовые установки на топливных элементах. Судя по появлению все новых концепт-каров именно с такими моторами, их будущее рисуется в розовых тонах.

Конечно, мы отметили лишь наиболее яркие особенности «национального двигателестроения». Современный мир слишком тесен, чтобы в нем бок о бок существовали принципиально разные культуры, не оказывая влияния друг на друга. Быть может, однажды выведут рецепт идеального «глобального» мотора? Пока каждый предпочитает бежать своей дорожкой: Европа готовится перевести чуть не половину парка на рапсовое масло; Америка хоть и старается не замечать происходящих в мире перемен, постепенно отвыкает от прожорливых мастодонтов и раздумывает над переводом инфраструктуры всей страны на водородное топливо; ну а Япония… как всегда, берет высокими технологиями и ошеломляющей скоростью их внедрения в жизнь.

В ближайшее время начнется производство двух новых моторов, разработанных совместно концерном «Пежо-Ситроен» и «Фордом» (журналистам их представляет инженер «Форда» Фил Лэйк). Дизели объемом 2,2 л адресованы коммерческим и легковым автомобилям. Система «коммон рейл» отныне работает под давлением 1800 атм. Топливо впрыскивается в камеру сгорания через семь 135-микронных отверстий в пьезоэлектрических форсунках (ранее их было пять). Теперь стало возможным впрыскивать топливо до шести раз за один оборот коленчатого вала. Результат — более чистый выхлоп, экономия топлива, снижение вибраций.

Применили два компактных малоинерционных турбокомпрессора. Первый ответствен исключительно за «низы», второй подключается после 2700 об/мин, обеспечивая плавную кривую крутящего момента, достигающего 400 Н.м при 1750 об/мин и мощности 125 л.с. при 4000 об/мин. Масса двигателя по сравнению с предыдущим поколением снижена на 12 кг благодаря новой архитектуре блока цилиндров.

Двигатель без клапанных пружин: новые технологии двигателестроения

А с учетом других доработок, могут добиться 10 – 12% увеличения. Таким образом, бензиновый двигатель приблизится по эффективности к дизельному!

Ладно, не буду петь долгие дифирамбы, сами все увидите внизу в видео. А сейчас принцип работы обычного распредвала.

Обычный распредвал, основанный на пружинах

Если вы хоть чуть-чуть разбираетесь в строении ГРМ (газораспределительного механизма) двигателя, вы знаете, что у каждого клапана есть специальная пружина, которая возвращает его обратно, когда коленвал его продавит вниз. Без такого строения работа будет невозможной!

Эти пружины оттягивают на себя достаточно большую часть энергии распредвала, то есть двигателю нужно продавить эту пружину, после чего она вернет клапан на место!

Чтобы продавить этот упругий механизм, двигателю нужно потратить примерно от 30 до 100 кг на сжатие, это очень большая энергия. А теперь представьте что таких пружин 16, по наличию клапанов.

И каждый раз, когда мотор работает, он отдает часть своей энергии на преодоление этого усилия.

Модернизированный механизм, основанный на магнитах

Теперь разберем работу, основанную на магнитах, что предложили наши умельцы. Вместо обычного коленвала, имеется специальный, который имеет магнитные эксцентрики, сделанные из магнитов (либо имеющие магниты в своем строении). Они притягивают конструкцию клапана, и находятся с ней в постоянном зацеплении. То есть клапан всегда как бы намагничен к этой части вала. В нужное время он закрывается, в другое открывается.

Что нам это дает? Все просто – рапредвалы не испытывают давления пружин, не тратят энергию на преодоление сжатия, а поэтому экономится реально куча энергии! Это реально прорыв.

Как заверяют сами производители, экономия топлива достигает 3 – 4 литров на 100 километров, а таким образом, если ваша ПРИОРА (на механике) расходует 8 -9 литров в городском режиме, то после переделки будет всего 5 – 6 литров! Просто супер! Прибавляется и мощность, по заверению изобретателей около 20 – 30 л.с.

Сейчас ребята, видео этих народных умельцев, больше контактов я не нашел. Можно посмотреть их канал на YOUTUBE.

Сомнения и размышления

Конечно даже самая идеальная система – неидеальная, многие скажут, что клапан «оторвется» от высоких оборотов и машина будет работать не эффективно! НО и здесь «Кулибины» представляют видео, оказывается — что клапан может держать 400 грамм веса, что более чем предостаточно для нормальной работы, смотрим.

Другие могут сказать, что магниты это мягкий металл и при высоких температурах его просто раскрошит. Но подумайте — зачем делать голое зацепление с магнитом? Ведь его можно закрыть в тонкий, но прочный металлический корпус, который будет противостоять нагрузкам, то есть магнит будет как бы в скорлупе!

Третьи могут возразить – что магнит со временем потеряет свое притяжение, это конечно справедливо, но реально пройдет несколько лет, можно будет поменять на новые магнитные валы. Ведь обычные, также выходят из строя через определенный пробег.

Так что изобретение вполне живучее, причем ребята получили патент. Хочется, чтобы оно не «похерилось» как обычно у нас это бывает, а получило свое развитие.

Дополнительные проценты энергии

Так как у нас на валу крутятся, по сути мощные магниты, то к ним можно примастерить катушки индукции, с 16 клапанов можно будет снимать дополнительное напряжение которые может заменить собой генератор, таким образом мы убираем еще одно звено которое съедает драгоценные проценты КПД.

Безумцы или гении: провалы и прорывы современных российских изобретателей

Про таких говорят «Кулибин» – по фамилии знаменитого российского изобретателя Ивана Кулибина. Чудаки, придумывающие безумные механизмы, на Руси и в СССР были всегда. Мы собрали изобретения нескольких из них и выяснили, что «кулибинщина» бывает разная.

В ынужден признаться сразу: этот материал задумывался как стопроцентно развлекательный, как повод в очередной раз подивиться на странные самоделки и тех, кто их изобретает. Но в процессе подготовки выяснилась пара интересных деталей. Мы решили поговорить не просто о самодельных авто (это отдельная тема), а о чем-то большем – всегда интересно, когда человек посягает на сами принципы устройства автомобиля. Мы все, как правило, считаем, что изобрести что-то новое в этой области очень сложно – и уж во всяком случае, невозможно сделать это в собственном гараже или комнате «хрущёвки». Мы свыклись с мыслью, что время изобретателей-одиночек осталось где-то в первой половине XX века. Но возможно, мы ошибаемся.

Изобретатель колеса

Начнём с якобы изобретённой технологии езды на спущенном колесе. Современных «кулибиных» очень любит телевидение – сюжеты о них с завидной регулярностью появляются и на региональных, и даже на центральных каналах. Своя минута славы выпала на долю Алексея Мишина из Екатеринбурга – в 2012 году его «изобретение» попало в эфир «Россия 2».

Телевизионщики, если это не специализированные автомобильные каналы, как правило, не слишком разбираются в автомобиле и транспортных технологиях вообще, и это был один из тех случаев, когда они пали жертвой своего неведения. Как, видимо, и сам изобретатель. В сюжете его «ноу-хау» противопоставляют технологии Runflat, но ничего не говорят о прочих экспериментах с различными вариантами усиления шин, ведущихся едва ли не с начала прошлого века – скажем, о мишленовской «бронированной» шине PAX-System. Помимо отсутствия явной новизны «изобретение» екатеринбуржца сложно разбирается и собирается, сложно балансируется и по сравнению с обычным колесом имеет огромный вес.

«Новый вид автомобильного топлива – вода обыкновенная»

Именно так решил назвать следующее видео его автор – и, разумеется, собрал немало просмотров. Надо заметить, что автор этого изобретения — не из России, но обделить его вниманием мы просто не могли. В кадре – таксист Тарас из Луцка, который «придумал», как использовать воду в работе ДВС. Однако через какое-то время после начала просмотра выясняется, что вода используется не как топливо, а как дополнение к нему, уж простите за спойлер. Тарас перешёл на низкооктановый бензин («залейте сюда 95-й – получится реактивное топливо, прогорят поршни») и утверждает, что расход топлива, если смешивать его с водой, значительно сокращается… Впрочем, по бортовому компьютеру это не особо заметно.

Полная ли это чушь? Совсем нет: еще в годы Второй мировой войны на некоторых самолётах и танках США и Германии применялись двигатели, в цилиндры которых в максимально распылённом виде подавалась вода. Мгновенно вскипая и превращаясь в пар, она давала прибавку к силе, действующей на поршень.

Не новинка это и для «кулибиных» – в СССР с этим охотно экспериментировали двигателисты-самодельщики. Грамотно впрыскивать воду – технически сложная задача, и исследования по ней ведутся до сих пор. И отнюдь не только Тарасом из Луцка.

Двигатель без клапанных пружин

Началось всё с видео, снятого самими авторами изобретения. Видео, вероятно, увидели телевизионщики, за чем последовал очередной сюжет, наделавший немало шума в автомобильном сообществе. Шум получился разный – от удивленных возгласов до гомерического хохота. Умельцы из Торбеево (Мордовия) исключили из ГРМ клапанные пружины, возложив функцию возвращения клапана в седло на магнитный кулачок распредвала. На какое-то время сюжет может заставить вас даже всерьёз задуматься, пока один из изобретателей не произносит фразу… Впрочем, смотрите сами.

Можно и 1 000 «лошадей» снять, но, действительно, зачем. Если взглянуть на историю эволюции ГРМ, то видно, что классическую клапанную пружину пытались заменить (и в ряде случаев успешно заменили) множеством разных механизмов – тут и вставленные одна в другую несколько пружин, и знаменитый десмодромный привод Ducati, и пневматические толкатели Формулы-1… Как говорится, сложно, но можно.

Эксперименты с магнитами тоже были, но к настоящему времени прекратились – с ростом температуры магнитные свойства ослабевают, да и на высоких оборотах магнитные кулачки не слишком хорошо возвращают клапаны, а кроме того, такой механизм сложно разбирать и собирать, продукты износа магнитятся к рабочей поверхности… и так далее.

Двигатель, собранный в Торбееве, действительно может иметь сниженное трение в ГРМ, но проверку длительными пробегами, высокими оборотами и температурами едва ли пройдёт. А уж идея снимать ЭДС посредством установки катушек над магнитами, чтобы отказаться от классического генератора, выглядит и вовсе утопически – очень вероятно, что кулачки просто перестанут должным образом магнититься и выполнять свою прямую функцию.

Роторный двигатель за зависть Мазде

На этот раз тему прорывных автомобильных технологий взялся освещать телеканал «Россия 1», предварив сюжет хлёстким комментарием: «Дело жизни – под капот Мазды». Из видеоряда следует, что ростовский изобретатель, пенсионер Геннадий Холодный, за 10 лет придумал новый тип роторного двигателя: «Нету перегрузок, нету трения, ничего не изнашивается», — описывает своё творение Холодный.

Компактность, малый вес, более чем тройная экономия топлива, высокая мощность (на собранном образце заявлено 240 л.с) – и, к сожалению, никакой конкретики по конструкции. Этому можно найти объяснение: российский патент уже получен, но шпионы-то не дремлют. По словам автора, к нему с целью приобретения технологии уже обращались из Японии и Китая.

Читать еще:  Ремонт и обслуживание автомобилей opel zafira своими руками

Этот случай выделяется из ряда приведённых выше «изобретений» — в целом, ничего фантастичного или откровенно шарлатанского здесь, в первом приближении, не просматривается, и можно допустить, что изобретение ростовчанина имеет шансы хотя бы частично оказаться дельным. В конце концов, над вариациями роторных двигателей инженеры бьются не одно десятилетие – одних только роторно-лопастных (РЛД) вариантов существует около десятка. РЛД прочили и на печально известный Ё-мобиль, да только вот забывали сказать, что работоспособных образцов изобретателям РЛД во всех его модификациях удалось собрать всего по нескольку штук (иным не удалось и этого): проблем, не учтённых в теории и вылезших на практике, как правило, оказывалось слишком много.

Двигатель Ибадуллаева

Именно под таким названием эта конструкция известна теперь. И в отличие от всех вышеперечисленных, она действительно уникальна и действительно работает. Хотя фон вокруг неё был точно такой же, как и во всех остальных случаях: первые упоминания в сети, сюжет на крупном канале – в этот раз репорт организовал НТВ. Но волны критики не последовало, а последовали обзоры и доклады, как с точки зрения термодинамики, так и с точки зрения работы 4-тактного ДВС, на тему с условным названием «почему именно конструкция Ибадуллаева работоспособна». Гаджи Ибадуллаев из Махачкалы поднял компрессию в цилиндрах 8-клапанного двигателя своей «десятки» до 22 (вместо обычных 9,9) и получил увеличение КПД до 65%. Это то, что рассказывается нам в сюжете. Но… как?!

Дело в том, что помимо возросшей компрессии – для чего изобретатель уменьшил камеру сгорания практически вдвое – контроллер двигателя Ибадуллаева хитро играет с углом опережения зажигания. Вспоминаем теорию ДВС: этот угол нужен, чтобы воспламенять смесь не в ВМТ, а чуть раньше – иначе часть топлива не сгорит от искры, а взорвётся от сжатия, и возникнет детонация. Чтобы её избежать, можно делать зажигание и поздним (поджигать смесь после ВМТ), но отдача обычного двигателя при позднем зажигании хуже, чем при раннем, и поэтому традиционно с ростом оборотов зажигание становится всё более ранним. Но Ибадуллаев посчитал, что если двигатель имеет высокую степень сжатия и работает на высоких оборотах, позднее зажигание позволяет передать на маховик большую мощность, нежели раннее зажигание на двигателях с низкой (обычной) степенью сжатия.

На низких оборотах в двигателе Ибадуллаева, как и в обычном моторе, применяется раннее зажигание, с ростом оборотов становясь всё более ранним, но по мере открытия дроссельной заслонки наступает такой момент, когда угол опережения увеличивать больше нельзя (если почти всё топливо горит на впуске, оно тормозит поршень на пути к ВМТ), и тут зажигание становится поздним! Ибадуллаев в своей работе (некоторое время назад её можно было найти в Сети) углы опережения/запаздывания зажигания на разных оборотах не приводит (и это понятно), но более-менее удачные эксперименты по запросу «двигатель Ибадуллаева» уже реализованы и опубликованы.

Для успеха исследователю этой темы нужна сбалансированная работа следующих элементов: расходомер (датчик расхода воздуха), датчик поворота коленвала и ЭБУ двигателя с модернизированной прошивкой, которая позволяла бы в определённый момент делать зажигание поздним. Сложно рассказать 180-страничный труд в паре абзацев, но суть можно свести к следующему: Ибадуллаев не просто поднял давление в цилиндрах, а научился удерживать его на высоком уровне после прохождения поршнем ВМТ, в то время как в обычном двигателе давление в цилиндре спадает резко, сразу после начала движения поршня вниз. В результате возникновения этой «полки» поршень на рабочем ходе оказывает серьёзное давление на рычаг коленвала ровно в тот момент, когда последний имеет наибольшую длину, и потому обеспечивает наибольший КПД.

Что дальше?

К сожалению, в последние годы скромный мужчина из Махачкалы Гаджи Ибадуллаев исчез и с объективов камер, и с просторов Интернета – даже с его официального веб-адреса пользователя теперь перекидывает на «левый» сайт о туризме. Создаётся впечатление, что детище Ибадуллаева теперь развивают исключительно добровольные последователи-энтузиасты. Не исключено, что технических проблем с этим двигателем немало, однако вот же он, на видео – автомобиль, в двигателе которого реализован новаторский принцип. Ездит, удивляет немного странным звуком работы мотора, обгоняет мощные джипы и здорово экономит топливо. Мы обещаем вернуться к этой теме.

Так было, и так будет всегда: любое общественно важное явление, будь то область искусства или технического прогресса, всегда обрастает кучей шарлатанов, жуликов и сумасшедших, жадных до популярности. Но настоящие гении всё ещё есть. Гении, соединяющие пару простых, давно известных вещей, чтобы получить что-то совершенно новое. Собрать автомобиль будущего в гараже сложно, но кто сказал, что теперь это стало невозможным?

Двигатель без клапанных пружин: новые технологии двигателестроения

Компания Koenigsegg, создавшая 1500-сильный гиперкар, которому не нужна трансмиссия, уже 15 лет ведет разработку инновационного двигателя внутреннего сгорания – без распределительного вала и дроссельной заслонки. «Мотор» разбирается в принципе работы чудо-агрегата.

Шведская компания FreeValve, партнер шведского производителя суперкаров Koenigsegg, опубликовала видеоролик, демонстрирующий схему работы принципиально нового двигателя внутреннего сгорания, где вместо традиционного распредвала используются управляемые электроникой актуаторы клапанов.

Шведы утверждают, что такой мотор способен потреблять топливо с практически любым октановым числом, отключать любое количество цилиндров, а также работать в любом из трех основных термодинамических циклов.

####Откуда он появился?

Разработкой принципиально нового мотора в начале 2000-х занялась компания Cargine, партнером которой с 2001 года стала фирма Koenigsegg.

Цель, которую поставили перед собой шведские инженеры, заключалась в создании экономичного и экологически чистого мотора нового поколения. За основу была взята концепция двигателя Кармело Скудери, в котором цилиндры делятся на рабочие и вспомогательные. Первые отвечают за сжигание смеси и выпуск, а вторые – за впуск и сжатие рабочей смеси. Правда, в отличие от мотора Скудери, шведы хотели реализовать эту схему внутри одного цилиндра, для чего им требовался быстрый и очень точный актуатор клапанов.

В 2000 году был подготовлен первый одноцилиндровый агрегат, способный работать на метане или водороде. Уровень выбросов оксидов азота у этого мотора оказался невероятно низким, однако автоиндустрию заинтересовал даже не сам мотор, а использовавшийся в нем толкатель.

Правда, первый вариант толкателя был полностью пневматическим и имел множество недостатков: он был слишком большой, слишком шумный и вибронагруженный. Поэтому инженеры решили добавить в актуаторы гидравлический элемент для фиксации клапанов и дополнительного демпфирования.

К 2003 году был подготовлен первый прототип актуатора, размеры которого уже позволяли использовать его на обычном двигателе, однако потребовалось еще несколько лет, в течение которых инженеры несколько раз меняли его конструкцию, прежде чем первый по-настоящему рабочий вариант системы электронного управления клапанами был готов к тестам.

Первый прототип двигателя без распредвалов установили на универсал Saab 9-5. Отдача этого мотора оказалась на 30 процентов выше серийного агрегата, а расход горючего уменьшился на треть. Понятно, что технология еще требовала доработки и адаптации под массовое применение, однако воодушевленные создатели надеялись уже в обозримом будущем запустить новые моторы в серийное производство. Двигатели без распредвалов должны были появиться на новом седане Saab 9-3 и кроссовере 9-4X — Cargine входила в альянс скандинавских компаний, которые пытались выкупить марку Saab во время кризиса 2008 года. Однако эта затея в итоге закончилась ничем, а «Сааб» продали китайцам.

Единственным автомобильным партнером Cargine с тех пор является фирма Koenigsegg. Ее глава Кристиан фон Кенигсегг как-то признался, что давно мечтает использовать технические наработки, сделанные его компанией, в массовых машинах. Возможно, он имел в виду как раз экономичный и эффективный двигатель без распредвала, к разработке которого он был причастен?

####Так как этот двигатель устроен?

«Если представить, что мотор – это фортепьяно, а клапаны – его клавиши, то применять распределительный вал – все равно, что играть на инструменте шваброй, а не пальцами», – так описывает Кенигсегг преимущества своего мотора.

Своего – потому что с некоторых пор компания Cargine переименована в Freevalve и находится под контролем группы Koenigsegg. Над проектом мотора без распредвала, способного «играть любую музыку», трудятся девять инженеров.

Вместо распределительного вала открытием и закрытием клапанов управляют очень быстрые электромагнитные актуаторы по команде компьютера. В них используются пневматические пружины, способные менять собственную жесткость, и особые датчики контроля положения клапана. Последние контролируют положение клапанов сто тысяч раз в секунду с точностью до одной десятой миллиметра, а для их работы требуется примерно в сто раз меньше энергии, чем для аналогов других фирм.

Подобная конструкция позволяет бесконечно менять фазы газораспределения, а также в любой момент отключать и задействовать любое количество цилиндров в зависимости от конкретных нагрузок. Такой мотор может работать по традиционному термодинамическому циклу Отто, экономичному циклу Аткинсона, а также по более сложному циклу Миллера, обеспечивающему мотору еще более высокую эффективность и экономичность. Кроме того, этот мотор может моделировать цикл Хедмана с изменяемой степенью сжатия, управлять которой стало возможно именно благодаря клапанам с электронным управлением подъемом и временем открытия.

Современный агрегат, разработанный Freevalve, на 30 процентов мощнее и имеет более высокий крутящий момент при низких оборотах, по сравнению с аналогами того же объема, но при этом на 20-50 процентов экономичней и выбрасывает вдвое меньше вредных веществ в атмосферу. Наконец, он способен потреблять как бензин с различным октановым числом, так и дизельное топливо.

Кристиан фон Кенигсегг отмечает, что новые агрегаты можно сделать компактнее и легче традиционных ДВС за счет отказа от распредвалов, дроссельной заслонки и соответствующего навесного оборудования. Освободившееся пространство можно использовать для повышения безопасности или увеличения свободного пространства под капотом.

####Погодите, но моторы без дросселя и с электронным управлением подъемом клапанов уже делают BMW и даже Fiat?

Действительно, баварцы первыми отказались от дроссельной заслонки, внедрив в газораспределительный механизм систему управления впускными клапанами с электронным управлением. Однако баварцы используют достаточно сложную механическую систему с дополнительным электромотором, а в конструкции Fiat MultiAir до сих пор не решена проблема с высокими насосными потерями.

Технология Freevalve, в свою очередь, способна управлять всеми клапанами независимо друг от друга, совмещая сильные стороны всех существующих термодинамических циклов в одном силовом агрегате.

Выпуск мотора без распредвалов считается экономически оправданным уже сейчас, несмотря на необходимость решения оставшихся проблем с высоким потреблением электроэнергии, уровнем шума и вибрациями. Но его главный недостаток – это высокая стоимость производства. Которая, впрочем, может снизиться в случае массового применения новой технологии.

Весной 2015 года Кристиан фон Кенигсегг заявил о том, что агрегат с бескулачковым механизмом привода клапанов уже практически готов и в скором времени будет запущен в серию. И если Кенигсегг сдержит свое обещание, то двигатель внутреннего сгорания получит шанс на новую жизнь перед тем, как мир окончательно будет завоеван электрокарами и гибридами.

Тем более, что новые двигатели могут использоваться не только в качестве основного силового агрегата – замены традиционного ДВC, но и в составе гибридных силовых установок.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector